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The problem of electroma netic field %qantization is usually
considered in text-books under the assumpiion that the field oc-
cupies some empty bor. The case when the box is filled with a
uniform dielectric medium was considered in (Refs.1,2). The quan-
tization, of the field in the medium consisting of two uniform
dielectrics with different permittivities was studied in
(Refs.3-D). The case of an arbitrary inhomogentous dielectric
medium was investigated in (Refs.6,7)” and especially in (Refs.
8,9). However, in all mentioned papers the properties of the me-
dium were believed time—independent. Here we want to consider the
most ggneral case of non-uniform and time-dependent media. Earli-

this problem was investigated in (Ref.10), but its authors
considered only approzimate solutions of the Heisenberg equations
for field operators in the case of small polarization of the me-
dium. Our approach differs from that of (Ref.10) and enables to
study the case when non-uniform time—dependent dielectric medium

is confined in some space region with time-dependent boundaries.

The basis of the subsequent consideration is the system of
Maxwell’s equations in linear passive time—dependent dielectric
and magnetic medium without sources:

rot E = -1/c aB/dt, rot H = 1/c ab/at,
div D =0 div B =0
= e(r,tJE, B = n(r,tH. (1)
Introducing the vector potential according to the relations:
B = rot A, E = -1/c 0A/ot (2)

and imposing gauge conditions
div(edA/at) = 0, ¢ =0 (3)

we can replace the system of the first-order equations (1) with
the single second-order one:

rot(1/pn rotl) = -1/c? 3/3t(edAsat) = 1/c aD/at. (4)

One can check that the vector equation (4) coincides with the set
of Euler’s equations
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0/0t 0L/0(0,A,) + 0/0x; L/2(3,Ap) - 0L/0A, = 0 (3)
for the Lagrangian density

L=1/2 [ e(r,)QA73t)%/c? - (rotA)¥p(r,t) 1 (6)
in the case of quite arbétrargtitime and ?ﬂace dependences of the

dielectric and magnetic permiitivities. en introducing the ca-
nonically conjugated variable

P =0L/3(3;A) = e(r,t)/c?* 0A/0t = -1/c D (7
one can construct the Hamiltonian density
H=P 3A70t - L =1/2 [ D*/e(r,t) + B¥/u(r,t) ] (8)

which leads again to eq.(4). But in the general case the expres-
sion {8) is by no means the energy of the system due to possible
time-dependences of the_coeffictents. This fact complicates the
quantization procedure. The usual procedure consists in introdu-
cing the field expansion over mode functions

D(r,t) = Zg,(tu,(r), B(r,t) = Zpy(tu,(r). (D

Subséitutin%_ these expansions into the Hamiltonian density (8)
and integra Lng it over the space variables one gets usually (due
to certain orthogonality properties of functions u, and vy) a sum
of independent oscillator-like Hamiltonians

H=§ H(r,)d% = 1/2 T(pa? + neqn D). (10)

After this the coefficients p, and qy are proclaimed operators
satisfying canonical commutation relations, so that the fields
become quantized. But this sketch of standard quantization scheme
shows distinctly that it can be used oni¥ in the case when the
solutions of Maxwell’s equations can be Factorised into the pro-
ducts of two functions: one dependent only of time, and another
dependent on space coordinates only. In the general case of non-
uniform and time-dependent medium such solutions do not exist,
and the usual scheme of quantization is impossible. This means in
particular, that we cannot ohtain any Homiltonian and, con-
sequently, any unitary evolution operateor. Therefore the &chro-
dinger picture does not exist in the general case. But the He-
isenberg description is still possible. 1t can be introduced as a
Qenerglasotaon of the approach used earlier by Moocre (Ref.11) for
the field quantization in the empty space region confined with
moving boundaries.

_ First of all we notice the important property of equation
(4): it admits a time-independent scalar product of any two dif-
ferent solutions in the following form:

(CA,B)) = =172 i §d®r e(r,t)[A0B™ /0t - B"9A/at]. (11)
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It is essential that the dielectric permittivity is a real
function, i.e. the medium is assumed lossless. Besides, the vec-
tor potential has to turn_into zero at the surfaces confining
the integration domain. The case of mqvtng_boundarnes_(consade—
red in Ref.11) is included to general situation automatically.

Suppose that before some instant of time (let it be_t=0) both
the medium and the boundaries were time-independent. Then solu-
tions of (4) could be factorized:

A(r,t) = g(riexp(-iwt), (12)
rot[1/p(r) rotgl - w¥/c? e(rig = 0. (13)

ghetscalar product (11) was proportional to the usual scalar pro-
uct:

((A,B)) = 1/2(w, + wy)expli(wy—w,)t1(gy,94q), (14)
(gn.ga) = §d°r €(r)gy"ga. (15)

But it is known that solutions of eq.(13) form_ the complete
orthogonal with respect to scalar product (13) set of vector
functions. Therefore any real vector field can be decomposed
over this set of functions:

Alr,t) = Slaygy(Pexp(-iwyt) + ay"gy " (Pexplioyt)].  (16)

Comparing (14) and (15) we can see that the basis functions can
be normalised in such way that they will satisfy the relations

((A“,A")) = GNH' ((A“,A"")) = 0. (1?)

After the instant when the properties of the medium became time-
dependent the basis functions change their explicit expressions

but the scalar products (17) will not change, and instead of (16)
we can write the decomposition

A(r,t) = ZlaAy(r,t) + a"A"(r, B ], (18)

Then we proclaim the (time-independent) coefficients of this ex-
pansion ' operators satisfying bosonic commutation relations and
thus obtain the quantized field from a classical one.

If in some time the medium will become again time-independent
then the physical states will be described with monochromatic
mode functions of the t¥pe (12), which will not coincide in gene-
ral with the basis functions of expansion (18). Therefore we will
have two different expansions of the field operator:. expansion
(18) over the states corresponding to the physical photons in re-
mote past and expansion Like (16) over the physical states ari-
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sing in future. Designating the "physical" states with the super-
script "zero", we can expand each set of basis functions into
a series with respect to another one:

A - Flonudn O + Bundy "1, (19)

The correspondinz expansion of "new" creation and annihilation
operators over the set of "old" ones is as follows:

2,2 = Tlayoun + a4 Bun"l. (20)

The initial state of the ?uantized field was determined with res-
pect to the set of "old" operators ( without the superscript
'zero” ). Then using expansion (20) we can calculate all quantum
statistical characteristics of the field in the final state. Tak-
ing into account conditions (17) and the evident properties of
the scalar product (11)

((4,B)) = ((B,A)" = -((B",A™)) (21)

one can express the coefficients of expansions (19) or (20) as
follows:

Oy = ((An,A"(O))), BNH = ((AN.,A"(O)))“- (22)

The quantization scheme sketched above can be applied to the
most general situation of an arbLtrar% space—-time nonuniform me-
dium and moving boundaries. However, the explicit calculation of
the mode functions and coefficients of the canonical transforma-
tion (20) can be performed only for rather simple special cases.
The first of them corresponds to the media with factorized elect-
ric and magnetic permittivities:

e(r,t) = e(r)y(t), H(r,t) = n(r)v(t) (23)

( the boundaries do not move). Then mode functions can be also
sought for in a factorized form:

ACr,t) = g(r)E(t) D(r,t) = e(r)g(rin(t). (24)
Let us demand the function g(r) to satisfy the following equation
rot(1/p rotg) = k*e(r)g, k = const. (25)

Then eqs.(2) and (4) result in the following ordinary differenti-
al equations for time-dependent factors of the vector potential
and electric displacement:.

n = k%ck/v(t) € = —cen/y(t) (26)

Eqs.(26) resemble equations of motion of an oscillator with time-
dependent mass and frequencies. The role of generalized coordi-
nate is played by the electric displacement time-dependent fac-
tor, while ~the vector potential time-dependent factor plays the
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role of generalised momentum. Eqs. (26) can be replaced by the
following second-order differential equation:

R+ N + Q2N =0, 1 =v/v, =k (t)xt). (27)

We shall consider the field inside a resonator. Then solutions of

eq.(25) can be chosen real vector functions satisfying the ortho-
gonality conditions:

(d®r e(r)ge(r)g (r) = k%8¢, . (28)

Complex solutions of eq.(27) can be normalized as follows:

v(t) [nn" - n"nl = -2i. (29)

This means that we choose the solution of eq.(27) in the statio-
nary case in the form of

No(t) = (veRe) 1/ 2exp(-iQyt). (30)

_ Due to (28) coefficients (22) are not equal to zero only for
coinciding indices_(intermode interactions are agbsent), so we can
omit the indices. Taking into account eqs.(ii),(26),(36) one can
represent these coeffictents as follows:

o= 1/2(ve/Q) 1 2(Qon + indexp(iQyt) (31)
B = 1/2(ve/Q)" " 2(Qen — in)exp(iQt). (32)

Let us introduce the quadrature components and their variances as
follows:

X, = (2)71/2(a, +a,") X, = i)V %(a," - a,)  (33)
073 = 1/2<)?IJ?J +§3§,> - <},><§3>. (34)
Suppose for simplicity that initially the field was in the cohe-

rent quantum state. Taking into account eq.(20) one can easily
obtain the following expresstons:

Oy = 172104812 = 1/2vQ, 10172, (35)
0y, = 1/210-B1? = 1/2v,Q, 1012, (36)
64 = Im(oB™) = 1/2v4Re(nn™). (37)

We see that time-dependent medium transforms an initially cohe-
rent state to a Tcorrelated quantum state" characterized by
a nonzero covariance (37) and unequal variances (35) and (36).

This state minimizes the generalized uncertainty relation by
Schrodinger and Robertson (Re?s.12,13):
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011022 - 0122 ) 1/4 (38)

g the equality takes place in the case under study due to.e?.
29)). For the detailed review of various forms of uncertainty
relations see (Ref.14). Properties of correlated and squeezed
quantum states were investigated in (Refs.15-19).

Let us consider as an example the case of a parametric exci-
tation when the properties of the medium harmonically oscillate
with tWLce.freguency with respect to some (resonance) mode. This
can be achieved, for example, by means of changing the density of
thgtmedtum. Since the magnetic effects are extremely weak, we can
write

Q2(t) = Q,2 (1 + ®cos2Q,t), r =0. (39)
We look for the solution of eq.(27) in the form

N(t) = (voR) 172 [u(t)exp(iQet) + v(t)exp(-iQ,¢)] (40)
with slowly varying time dependent amplitudes. Substituting (39)
and (40) 1into (27) and performing averaging over fast osciglatt—

ons we arrive at the equations.(ngglecting he second order deri-
vatives of slowly varying amplitudes)

u = iQ,ev/4, v = —iQq2u/4 (41)
whose solutions are
u(t) = cosh(Q.et/4), v(t) = —i sinh(Q2t/4).  (42)

The variances (33),(36) oscillate with the twice resonance fre-
quency, but their ratio (the so called squeezing coefficient) is
confined at every instant between the values

exp(—Qo@t) € Q20,,/09, § xp(Qat). (43)

Certain inequalities for the s?ueezing coefficients can be found

for arbitrary time dependence of the frequency in eq.(27). Consi-

?gr;ngigggag nonmagnetic medium one can prove the unequalities
efs.19,

[(1-R*/2)/(1+RY/2)1? € Q020.4/0,, < [(1+RY/2)/(1-R'/2)]? (44)

where R is the energy reflection coefficient from the effective
potential barrier corresponding to eq.(27)

We would Like to emphasize once again that we have used the
Heisenberg.picture for the description of the quantized electro-
magnetic field. However, since for a factorizable medium (23)
Mazwell’'s equations can be derived from the Hamiltonian (8) or
(10), the Schrodinger description is _also possible in this case.
We shall illustrate it for the most simple case when
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v(t) =1, x = x(ht), x(0) = 1. (45)

Here h is a_characteristic fre?uency of the medium properties
changing. The method used below can be easilg.applie to a more
eneral case. Let ¢ = 1 and the dimensionless iime t, = kt. So
27) results in

N+ w?(atydn = 0, (46)

where
wi(ety) = w¥(ht) = 1/x(ht), 2 = h/k. (47)

The quantization of a harmonic oscillator with a variable fre-
?%gpcy is done by introducing integrals of motion operators (Ref.
a(ty) = i(2)712 (Y(tdE - §(tdN), a'(ty) = [alt)]1*.  (48)

Here y(t,) is a "ruling solution" of eq.(46) satisfying the time-
independent condition

Yty (ty) - y" (tedy(ty) = 20 (49)

to ensure the following commutation relation

[a(t,),a’ (t)] = 1. (50)

We want to stress the difference in signs of right-hand sides of
(29) and (49) due to the difference between Heisenberg and Schro-
dgnger pictures. For the integrals of motion to coincide at t, =0
with creation and _annihilation operators, it is necessary (in ac-
cordance with (49)) to choose the initial conditions

y(0) =1, y(0) = i. (51)
After the instant t, = t., when the medium properties stop chang-

ing, "new" creation and annihilation operators are to be introdu-
ced:

Qeo, = P00t 12 (€ - inu(t,)). (52)
Then the expansion of "new" operators over "old" ones is

.y, = aalty) + pa’(t,) (53)
and we can get

B(t,) = 1/2 ((t)) 742 (ultedy(te) + iy(te)). (54)

Creation and annihilation operators mizxing results in a change of
occupation numbers in a given mode. Generation of photons from
vacuum due to the medium properties change is worth considering.
If at t, = 0 the number of photons was zero then at an instant t,
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>0 the average number of photons is
n =B "(t,)p(t,). (35)

Yablonovitch (Ref.21) stated that photons will have a thermal
distribution at a temperature proportional to the rate of the me-
dium properties change , i.e. proportional to h. Then for high
photon energies (proportional to k) there will be

n ~ exp(-const k/h). (56)

The solution of (39) at a little t, can be found for an arbitrary
law of change of x(t). At t, = 0 we shall have

d/dt, ((@)'/2 B) = 1/2 dw((at,))/dt, (57)
B ~ to/2 dw(aty))/dt, ‘o (58)
n ~ (t/2 d(w(ht))/dt). (59)
For any instant t a decomposition of the solution can be found in
the limit 2 —> 0 ( for high photon frequencies ) by means of the

method of multy-scale asymptotic decompositions (Ref.22) for an
arbitrary law of change:

y = (wlety)) 1’2 { exp(is) + & [E(aty)exp(is) +
+ F(aty)exp(-is)] + ... } (60)

where

"

s = 2/2 [exp(at,y/2) - 1] (61)

and functions E and F are determined by
F = const
dE/d(ety) = -i/(4w?) d*w/d(aty)? +
+ 13/(80®) [dw/d(aty)]?
with initial conditions
EC0) + F(0) =0, i (E(0) - F(0)) = 1/2 dw/d(2t,). (63)
For the case y = exp(-ht), which approxrimately describes dielect-

ric permittivity falling achievable in experiments (Ref.21), one
can find the exact solution - a linear combination of two Han-

kel’'s functions Hy‘'’[2/2 exp(at,/2)] and H,'?’[2/2 exp(at,/2)].
Nevertheless an asymptotic decomposition is still more useful and
can be expressed in an explicit form:

(62)

y = exp(-zt,/4)exp(is) + & exp(-at,/4) { (-i/16) x
x [1 + exp(-&ty,/2)]exp(is) + i/8 exp(-is) } + ... (65)
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Now we have

B = ia/8 [exp(-is) — exp(-at,/2)exp(is)] (66)
and the number of photons
n=22/64 [1 + exp(-at,) - 2cos(2s)exp(-2ty/2)] (67)

This number oscillates with a growing frequency and a decreasing
amplitude and in the limit t, —> » tiends to a constant

n —> h%/64k?.

As we can see it is not in agreement with the statement (38) from
(Ref.21). The energy of photons in the mode is

nwk —> h?/64k exp(ht/2), t > o (69)

and it grows without a limit. Also at any time the sum of ener-
gtes of all modes diverges. This can be explained bg the fact
hat it is impossible to decrease dielectric permittivity fo zero
for nondispersive media; thus the assumption that it does not de-
pend on a frequency is not valid for high frequencies., In the
other limit ® = h/k —> o we introduce another dimensionless time
t, = aty. The solution erpansion over 6 = 1/ ( not valid for
large t; ) is

y=1+0it,/2 + 8%/4 [t, + 1 - expt,]1 + ... (70)

and the first term for the number of photons does not depend on
the mode frequency:

B =exp(t,y/2) -1 + 0i/2 [t,exp(t,/2) + 1 — expt,] (71)
n=1/2 [cosh(ht/2) - 1]. (72)

Another example of time dependent resonator which can be sol-
ved is an egpt% resonator with a movtnz ideal wall. Moore (Ref.
11) ﬁropose_ the following complete orthonormal set of solutions
(in the special case of a single space dimension, i.e. confining
?Lth)the modes with linear polarisation parallel to the wall sur-

ace):

éu(x,fg = (4N) "V 2{exp[-inNR(t-x)] - exp[-iTWNR(t+x)]} (?73)
c=1).

These functions depend on the solution of the functional equation
gL(g) Lg thethSLtion of the moving wall, another wall is assumed
o be at res

R(t+L(t)) = R(t-L(t)) +2. (74)
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An approximate solution of this equation in the case of the small
velocities_of the wall was found % Moore (Ref.11) and later used
in (Refs.23,24). However, that solution is not valid in the case
of parametric resonance, when

L(t) = Lyl1 + a sin(2,t)], lal<<l, Q, = /L, (75)

(the resonance at the lowest resonator eigenfrequency). The cor-
responding solution for small values of the percentage modulation
was found in (Ref.25):

R(E) = E/L, {1 - in(2Q8) + a’[sin?(Q,8) +
+Ei/QQ§E Sin(20,6)1 + ..?%. arlsin® (@8 (76)

Eqs.(11),(22),(45) result in the following expressions for the
transformation coefficients (21):

Ay w

=1/2 (M/N)1'? /L°+1er {in(-NR(L,z)+Mx]}dx (77)
/L1 ° '

The calculations are rather simple for not very large values of

time, when the second-order correction in (76? remains small .

{ge? Zé?e following simple formula for variances can be found
ef. :

o}
‘{%= 1/2exp(£1/2 maN), N>>1, laNi<<l (78)

022

where N is the number of semiperiods of wall’s vibrations. One
can check that the maximum squeezing coefficients given by eqs.
(43) and (78) coincide for equal values of percentage modulati-
on in two different methods of exciting the field via the para-
metric resonance.

Now let us consider the long-time asgmptotigs for the R-func-
tion  under the condition e/L, << 1, et >> L,* for an arbitrary
periodic motion of the wall L(t) = Ly + 2f(£3. "We shall choose
the solution of eq.(74) in the following form:

0

R(t) = %_Oe“Ru(t). (79)

Substituting expansion (79) to eq.(74) we attain
eNRy[t+L+ef(£)] = % eNR, (t-Lo-e7(£)] + 2.

Developtgg both sides of this Equation tnto power series we have
Y MR O (LR (K = T L "Ry K (E-Ly)
%=o§=o " ° Peok=0® T ’
D e Rk + 2.

It is convenient to use another summation indexr M=N+K:

X
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;Log—oen[R""(K)(t+L°) — DRy (=L 1FR () /KY = 2.

From this equation_we obtain the following system of equations
for the functions R,(t) (¥=0,1,...):

g O[R"-K“’(t+L°)—(-1)‘R"-K‘"(t—Lo)]f‘(t)/K! = 28,,. (80)
Furthernwe consider thggsimﬁlest Law of motion (795) with ¢ = al,
0-

and the frequency Wq = e use the Fourier-transformation me-
thod to solve eq.(88):

Fw) = Sexp(int)f(t)dt, F(t) = Sexp(-int)F(w)dw/ 2,
1/2n Sexp(iwT)dt = 8(w), (81)
(exp(iwt) f(t+Ly)dt = exp(-iwLly)F(w),

Sexp(int) F M (B)dt = (~iw)"F(w).
Then we get from (80) the following integral equation:
gg 1/NY §du(-iu) "Ry _y () [exp(-iuly)-(-1)Yexp(ivLy)] x

x $y_y(sinM(wgt)) = 2m8(w) by, (82)
d,(sinYwet) = Sexp(int)sin"(w t)dt =
= {/(2mN 1 g; €y’ (-1)78(w+(N-21)wg) . (83)

Substituting expresgion (83) to eq.(82) we can easily make inte-
gration over v and arrive at the equation

Ry (w)2isin(wl,) = 26y,8(w) - g_o(—i)"’J/Z" Cy x

% To+(N-20)0g 1" Ry yLot(N-27)0g]
x [exp(~iwly)-(~1)Yexp(inLly)] (~1)°V. (84)

Taking into account the formula for derivatives of 8-function
§N () = -N&" "V (x)/x,

one can easily find the expression for Ry(w)

Ro(w) = 2n8" (w)/il,. (85)
Then making inverse Fourier-transformation we have
Ro(t) = t/Lo. (86)

To find the long-time asymptotics we will seek for the solution
of eq.(84) in the form of a sum over 8-functions
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Ry(w) = g_oar"ﬁ‘"’(m(M-ZK)wo) (87)

This choice corresponds to the representation of the function
R(t) in the form of a power series with respect to the parameter

(et/L?) and neglecting terms Like e’t™ with J>N. Then only terms
corresponding to N=1 are significant in eq.(84):

Ry(w)2isin(wly) = 26,,8(w) + (-1)%o0s(wl,, x
x [(@+QQ)RN_1(Q+QQ) - (Q’@Q)RN_((Q"QQ)]. (88)
Taking into account the expression for R,(w) (85) we get

Riy(w) = 2n(-1)%/2L, cotan(wly) [(w+wg)d’ (w+wg) -
- (00g)8" (0wg)] = 2n(~1)° [8" (w+wg) - 6" (w—wg)1/2L,%. (89)

With respect to expansion (87) we have
aoo = Zﬂ/iLo, aoi = “aii = 2“(-1)0/2L02.

Substituting expansion (87) we obtain the following recurrence
relation for N2

at = (—1’)°awg/2NLo [N-2k-1)a ™' - (N-2k+1)a " "11.(90)

Let us introduce the notation a,*" = i@, *", a,*"*! = a, ™", then
Na M = (-DMala " P N-2k-1) - G- NV N-20+1) T,
a = (_1)Owg/2Lo. (gi)

Making inverse Fourier-transformation of (87) we get (N»2):
Ry(t) = 1/2n g_oax” (it)Mexp(it (N-2K)wg)

Then it is easy to see that we have got the same expression for
Ry (t) that was given in eq.(76). Now we consider the sum

B(t) = F e'Ry(t) = & eM(it)M) a Merp(itog (N-26))p5 /21 (92)
N=2 N=2 k=0 _
for p=1. Taking into account the evident symmetry condition a " =

N we obtain

e ol

=2 z"(—i)”g A sinto, (N-20))p /2n, 2z = et,  (03)

= —Qy-g

where n=[N/2] and [ 1 is the entire part of a number. Taking into

account that (-1)" = (=1)NN"/2 e introduce the notation ¢ =
==2ImF. With the help of the recurrence relation (91) we get the
differential equation for the function F

0F/9z = alpexp(-iwgt) - exp(iwgt)1[20F/3z - 2pdF/dp +
210



+ (za/mQ)exp(iwgt)] (94)
with the initial condition F(z=0,p) = 0. Its solution is

F = -(za/m@)exp(iwgt) + ¥,
where V satisfies the equation

0¥/9z = alpexp(~iwgt) — exp(iwgt)1[20%/dz -
- 2pa¥/ap]l + (a/m@)ezp(iwgt). (95)

The particular solution of this equation is as follows:

¥, = -(1/2nQ@) Inlperp(-iwgt)/(pexp(~iwgt) -
—exp(iwgt))]. (96)
Then the general solution of eq.(95) is the sum of ?8 and an ar-

bitrary solution of the uniform equation (85) with b= The uni-
form equation has the first integral:

C = exp(-iwgt/2) {zp'’/? - 1/2a inl(p'/2exp(-iwgt/2)-
—ezp(iwgt/2))/(p'’ 2exp(~iwyt/2)+exp(iwgt/2))1}.
Then we get the general solution of eq.(93) in the form of ¥ =
=¥, + f(C), where f(C) is an arbitrary function of the first in-

tegral. From the condition ¥(z=0) = 0 we can determine the form
of the function f

£z) = (1/21Q) Ln{[1+exp(-2uexp(iwgt/2)x) 1%/
/4exp(~2cexp(iwgt/2)x) }.

After some algebraic transformations we find the function V¥

¥ = —(1/27Q) ln{éperp(—iwgt)exp(—Zcz)/[cos(mot/Z) +
+ 2isin(wgt/2)exp(-20z)1%}.

Taking into account the first and the second terms of the expan-
sion of R(t) in a set of et we obtain the final expression:

R(t) = t/L, - (2/7Q) Im In[1 + § + exp(iwgt)(1-§)1,  (97)

where a notation E = exp[(=1)°*'w,et/L,] is introduced. Now we
can compute some characteristics of the electromagnetic field in
a cavity in the presumption et/L, >>1, e<<L,. Let us evaluate the
number of photons which will be generated ~in the resonator with
moving walls in the %ggg time Limit. For this purpose we must

evaluate the integral .
+
Byw = 1/2 (M/N)''? %e{p[—in((M+N)r+Nf(x))],
where the function f(x) is given by (97):
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f(zx) = =2/mQ Im In[1+E+exp(inQr) (1-E)].

Let us consider the case when Q=2p is an even number, then §<<1.
Due to ex/Ly<<1 we can consider f(z) as a periodical function
with the period of oscillations T=2/Q. Then 14270

-1+

B""§= (M/N)1/? g_ expl-in(N+M) 2K/Q] g expl-im x

Uy w
x ((N+M)x+NFf(z)) 1dx. (98)

Analyzing the structure of £(x) we can approximate it by three
linear functions as follows:

-(1-6Q) (z-N+1), N-1 < r < N-1+1/Q-6,
f(x) = (1/0—26)(I—N+1—1/0)/6, N-1+1/Q-6 < = < N-1+1/0+8,
-(1-8Q) (x-N+1-2/Q) , N-1+1/Q+8 < x < N-1+2/Q,

§ = 26"/ 2/nq.

Then one can easily calculate integrals in (98) and obtain the
general expression for the coefficients Oy and Byy

Ouw = 2(4/N) 72 (=1) NN L (8NG-M) T sinl (BNG-M)T/Q] x
x explin(N-M)(@-1)/Q] sinln(N-M)1/sinln(N-M)/Q], o
Bun = 2(M/N)T/2(~1) N1 N [ (SNQ+M) ] sinl (SNQ+M)1/Q]

x expli(N+M) (Q-1)/Q] sinln(N+#) 1/sin[m(N+M)/Q].

Hereafter we consider only the main resonance of Q=2. After
some algebrayc.transformgtLons we get the following expression
for the coefficient IB,,1?:

IBuw!? = 4M/(Mn?) [1-(-1)"cos(2N8m) ] [1+(-1)""¥]/
/(M+2N8) 2, (100)
To find the total number of photons in the mode with number M we

need to calculate the sum over N. First, let us evaluate the fol-
lowing auziliary sum:

S(z,2) = S;_(i‘os(xN)/[N(z+N)2], (101)

where r=26m<<{ ana z=M/28>>1 .Then we have

$(z,z) = 8 y %_105(Nr)exp[—y(z+N) 1/N dy =
=1/2% -1/2 8 yexp(-zy)in(2coshy-2cosz) dy. (102)
Since x<<1 and the main region of integration ysi/z<<i, we can

expand coshy and cosr into power series of y and z. Thus up to
the second order terms we have
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S(z,x) = 1/2% -1/2 8 yerp(-zy)In(y?+z?) dy. (103)

The last integral can be easily evaluated, if one takes into ac-
count the inequalities ygl/z<<x<<l. Therefore

$(z,z) = -lnz/z? + 0(27%). (104)
The similar sum (see (100))
%_ios(Nr)/[N(z+N)] (-1)¥

can be obtained from (102) by means of the replacement r —> X+T.
Then we have in (103) In(4+y -x*) < Inlz’l for z<<i and y<<i, so
that the corresponding terms can be omitted. The main contribu-
tion_to the sum due to the first term ( with unity tn the numera-
tor ) in expression (100) is proportional to

$(z,0) = —E yexp(-yz)inlt-exp(-y)] = lnz/2%. (105)
Thus the number of photons generated in the M-th mode is
Py = %l?“,lz = 4[1n(M/28)-(-1)"1n(1/281) 1/ (Mr?). (106)

Since in the considered case (Q=2) 6(t)=exp(—ﬂet4L0’)/n, we get
the following rate of photon generation for et/Ly">>1:

dP,/dt = 4aQ,[1-(-1)"]1/(n?M). (107)

Here Qo =m/L, is the main.eigenfrequencg of the resonator, a=¢e/L
is the dimensionless amplitude of oscillations of_the.wall (which
vibrates at the frequency 28,). E?. (107) is valid in fact only
for not very large numbers of excited modes M (due to limitations
arising in approrimations made before). Besides, in real stitua-
tion we should lLimit the time t by the relaxation_ time of the re-
sonator T (due to the dLSSépatLOR on the walls). Then the maxtimum
number of photons generated in the M-th mode equals approximately

PMO* « 4/ (n2M) [2aQ(M)/M + OCln(H+1))], (108)

where Q(M) is the guality factor of the resonator’s M-th mode.
This formula is valid provided aQ/M>>in(M+1).
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